Exercise 40

Find a function f and a number a such that

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{6}-64}{h}=f^{\prime}(a)
$$

Solution

Recall the definition of the derivative of $f(x)$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Comparing this with the given equation,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{(2+h)^{6}-2^{6}}{h},
$$

indicates that

$$
f(x)=x^{6} \quad \text { and } \quad a=2 .
$$

